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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2595

DESTGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED
'VELOCITY DISTRIBUTIONS ALONG TEE CHANNEL WALLS
II - SOLUTION BY GREEN'S FUNCTION . S

By John D. Stanltz

smmm

l

, Methods . of solutlon by Green 8 function are developed for the des1gn
of two- -dimensiongl unbranched channels with prescribed velocities as a-
function of arc length along the channel walls. The methods ‘apply to
-incompressible and linearized compre381ble, nonviscous irrotational flow..
" One numerical example is presented for an accelerating elbow with
linearized compressible flow. The elbow shape obtained from the solution
by Green's function is the same as that obtained from a solution by

‘,€ relaxation’ methods for the same prescribed conditions. The time: ;required

for the calculations is .considerably less for solutlons by Green's
function. . . :

INTRODUCTION

- In this report a general method of design is developed for two-
dlmen31onal, compressible or- incompressible, nonviscous irrotational
wuflow in unbranched channels with prescribed velocities as a function of
arc length along thé channel walls. The design of channels with pre-
scribed velocities is important because: (1) boundary-layer separation
‘losses can be avoided by prescribed velocities that do not- decelerate

' 'frap1dly .enoygh to cause separation, (2) shotk losses in compressible -

flow and cavitation in incompressible flow can be avoided by prescribed
velocities that do not exceed certain maximum values dictated by these
phenomena, and (3) for compressible flow the desired flow rate can be

~ assured by prescribed veloc1t1es that do not result in "choke flow"
,condltlons., ‘ ~ ~

N

In Part I of this report (reference 1), solutlons were obtalned by ﬂ
relaxation methods. This method of solutlon results in complete .infor-"
mation concerning, the distribution of. flow conditions throughout the

channel and can be used to obtaln solutions for 1ncompre551ble flow and -
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. for two types of compressible flow: the general type with arbitrary .
value for the ratio of specific heats 7 (1.4, for example) and theé
linearized type with y equal to -1.0. ‘

In the present report solutions are obtained by Green's function.
This method of solution is limited to incompressible and linearized
(v = -1.0) compressible flow, but the method is more rapid than relax-
ation methods, provided information within the channel is not required.
The method of solution is developed for the channel walls only although
the method can be extended to determine the shape of streamlines within
the channel.

The design method reported herein was developed at the NACA Lewis
laboratory during 1950 and is part of a doctoral thesis conducted with
the advice of Professor Ascher H. Shapiro of the Massachusetts Institute .

of Technology.

METHOD OF SOLUTION

The design method is developed for two-dimensional channels with
prescribed velocities -along the channel walls. The prescribed velocity
is arbitrary except that stagnation points (zero velocity) cannot be
prescribed. This exception limits the design method to unbranched -
channels. In the present report the method of solution is by Green's '
function in conjunction with a formula derived (elsewhere) from Green's

~theorem.

Preliminary Considerations

Assumptions. - The fluid is assumed to be nonviscous and either
compressible or incompressible. If the fluid is compressible, the
ratio of specific heats y 1s assumed to be -1.0, so that the differ-
ential equations describing the flow are linear. The flow is assumed to
be two-dimensional and irrotational.

-

Physical plane. - The flow field of the two-dimensional channel is
considered to lie in the physical xy-plane where x and Yy are
Cartesian coordinates expressed as ratios of a characteristic length
equal to the constant channel width downstream at infinity. (A1l symbols

are defined in appendix A.)
¥

At each point in the channel the velocity vector (fig. 1) has a
magnitude Q and a direction 6 where Q 1is the fluid velocity
expressed as the ratio of a characteristic velocity equal to the constant’ .
channel velocity downstream at infinity. For compressible flow, the
velocity Q is related to the velocity a4 by '

~arAn

T +_
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‘where q 1s the velocity expressed as a ratio of the stagnation~speed“
of sound and the subscript d refers to conditions downstream at
infinity. :

Stream function V¥. - If the condition of continuity is satisfied,
a stream function ¥ can be defined such that for incompressible flow

AV = -’25 ay (2a)
where, from Part I,
ay = Q dn ~ (2v)

where n is distance in the Xy-plane measured normal to the streamline
and. expressed as a ratio of the channel width downstream at infinity.

For linearized compressible flow (y = -1.0)
n ay* o
¥ =3 Z%ir (20) ‘
where, from Part I,
dy* = p*qg* dn ' (2d)

and where Ay* is the value of ¥ * along the left channel wall when
faced in the direction of flow if the value of ¢* along the right wall
is arbitrarily equal to zero. The value of AYy* is obtained by inte-
grating equation (2d) across the channel at a position far downstream
where flow conditions are uniform

M* = pd.*qd* ‘ (26)

From Part I, p* is related to the density p, expressed as the ratio
of a characteristic density equal to the stagnation density, by

/

pr=Xpp - ‘k‘(Zf),
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where , ‘ .
2
<9aqa>
1 Ppdy .
ki = o > (2g) N
a g OY
1-| = ~&
ady 0
. in which
1
-1
-1 2
pa=(l—-—2-—qa> (Zh
and
_ (1. )t :
where the subscripts a and b refer to quantities related to any two .
selected values of veloc1ty (qa and. %y s respectively) for which veloc-
ities the densities given by equations (2h).and (2i) are equal to the L

densities p given by equations (2f) and (2g). Also, from Part I,
g* 1is related to q by

Q" = kaq (23)

where

(2k)

For each prescribed velocity distribution along the channel walls there
are an infinite number of linearized compressible flow solutions,
depending on the selected values of a and %, in equations'(Zg) and
(2k). However, for values of qa and g Wwithin the range of q pre-
scribed along the channel walls (and therefore everywhere in the channel),
the solutions, that is, channel shapes, probably differ only 1n small .
detail (Part I).




© NACA TN 2595 - | 5

The values of q, and g, might, for example, be selected to equal
the maximum and minimum values of g (which’values of q must occur on
the channel walls and are therefore known). Also, the values of gq,
and gqp mnmight be selected to equal the upstream and downstream veloc-

- ities q, and gy. In this case the upstream and downstream channel

widths would then satisfy continuity for a gas with the correct
(arbitrary) value of y (1.4, for example). If the upstream and down-
stream velocities are equal, their value and -the value of some other

" velocity (the maximum or minimum velocity, for example) can be selected
for g, and gq, or, if desired, qg can be equal to qy so that

¥

amG= 9

q

and

and, from Part I,

and

Pl * (2m)

Equations (2a) and (2c) define the stréam function ¥ for incom-
pressible and linearized compressible flow, respectively. For both
types of flow ¥ wvaries from zero along the right side of the channel,

when faced in the direction of flow, to %‘ along the left side of the

'cnannel.

_ Velocity potential . - If the condition of irrotational fluid
motion is satisfied, a velocity potential @ can be defined such that
for incompressible flow

+

¢

ad =% a® - (3a)
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" where, from Part I, ‘ ~ _ ‘ .

d® = Q ds T ¢-15)

where s 1is distance in the xy-plane measured along the streamlines
and expressed as the ratio of channel width downstream at infinity.
For linearized compressible flow :

2390

n agp*
id =3 N (3c)
where, from Part I,
do* = g* ds | (3d)

Equations (3a) and (3c) define the velocity potential ® for incom-
pressible and linearized compressible flow, respectively.

Qutline of design method. - Solutions for two-dimensional flow are
boundary-value problems. That is, the solutions depend on known con- ’ -
ditions imposed along the boundaries of the problem. In the inverse :
problem of channel design the geometry of the channel walls in the
physical xy-plane is unknown.  This unknown geometry apparently precludes “
the possibility of solving the problem in the physical plane and neces-
sitates the use of some new set of coordinates, that is, a transformed
plane, in which to solve the problem. These new coordinates must be
such that the geometric boundaries along which the velocities are pre-
scribed are known in the transformed plane. It is also necessary, for
the method of solution employed in this report, that the coordinate
system of the transformed plane be orthogonal in the physical plane.

A set of coordinates that satisfies these requirements is provided by
® and V¥, which are orthogonal in the physical xy-plane and for which
the geometric boundaries are known constant values of V¥ (equal to O

and %)'in the transformed O@Y-plane. The distribution of velocity as
a function of ® along these boundaries of constant ¥ 1s known because,
if ' ‘

Q = a(s)
or v
, | g = a(s) | \ o -
is prescribed, eQuation (3a) or (3c) integrates to gi&e ’ .

o = &(s)
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from which

Q = Q(d)
or

q = a(®)

The technique of the proposed channel-design method is therefore to
solve for the physical x,y-coordinates of the channel walls in the
transformed ¢&W-plane where the prescribed boundary conditions for the
two-dimensional flow problem are known. ’

Channel wall coordinates. - From Part I the distribution of channel
wall coordinates x and y along the boundaries of constant ¥ equal

to 0 and I in the transformed dy-plane is given by

2
2 x| cos 8 ‘
and
2 sin 6 '
y = ;I_ oY * -—q,r ad (4b)

for linearized compressible flow, and for incompressible flow

x = % = a0 (52)
and
2 ]sin 6 L4
== 3 ad | (5b)

where the constants of integration are selected to give known (specified)
values of x. or y at one value of ¢ along each boundary. Because

q* and Q are known functions of ¢ from the prescribed velocity as a
function of arc length along the channel walls, the shape of the ‘channel
walls in the physical xy-plane is given by equation (4) or (5) if 6 1is
determined as a function of ¢ along the channel walls (¥ equals O and

3). 1In this report the solution for 6 as a function of ¢ along the
channel walls in the V¥ -plane is cbtained by Green's function.
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Solution by Green's Fuhction

Continuity. - From Part I.the continuity equation becomes in the
transformed QW¥-plane

0 log, V. 3 )

, —%  *owT O (62)
where for incompressible fidw
vV =2q ~ (ev)
and for linearized compressible flow
*
- 3 | (6c)

V = —
1+ Jl + g*2

Irrotational motion. - From Part I the equation for irrotationél
motion becomes in the transformed JQ¥-plane

dloge V. 3p

—7 "5 ° (7)
Integral equation for 6(%,,¥,). - From equations (6a) and (7)
2 2
o] 076
— +—= =0 ‘ 8)
3 o !

so that from appendix B the value of € at a point (&,,¥,) within,

or on, the channel walls in the transformed OQW¥-plane is given by the
integral equation

© ‘ ’
| S o log, V [ 9 log  V o
9(@0,111'0) =5 ¢ —>S5 — %" e o ad | ‘ (9)

2 -

-oe

2Zan
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where the subscripts O and % refer to the channel Wali bounaaries

along which ¥ is O and %’ respectiveiy, and G 1s the Green's
function of the second kind for the channel, which is an infinite strip

of width -’2-[- extending in the $-direction to .

Green's function G. - The Green's function of the second kind G |
for the infinite channel in the ¢W-plane is given along the channel

wall boundaries (¥ equals O and %) by (appendix C)

Gy op & = -loge [co'sh2 (9-®,) - cos? ('4’-‘1’0)] | (10)

[\V]

where (®,¥) 1is any point on the channel wall boundary and (CPO ,'Q'o) is
the point in the channel or on the boundary at which 6 is to be deter-

mined.
Numerical integration for 8(%,,¥,). - From equations (9) and (10)
» ,
? 1 0 108 ¥ 2 (9-0) - sin? 3-8 )
2n 9( O,llfo) = —3S5 — log, |cosh (- o) - sin® ¥ a(d- o) -
~oo o %

d log_ Vv 2 5. ,
__6_5_ log, [cosh ($-2) - cos” ¥ a(e-9.) (11)
- J0

in which the independent variable of integration has been changed from
a® to 4a(®-®,) so that the origin, for purposes of integration, lies
at @, rather than & = 0. If for small changes in ($-@)), that is

: d log, V
for small AP, the term _Te_ may be considered constant and equal

to its average value over the interval AQ, then

0 loge V. A logg V
3% T T A%

and equation (11) becomes
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A log. V (©-0,)+AD . :
2n0(@, 1) = { e ' log, [coshz((b-@o) - sin? uro] a@e-0)) -

o-t)=-al 20 Je-a)

ool

® {A log, V @ -0,) w0

(- 8p)=-o0

" loge [cosh?(@_Qo) - cos? uro] a@-@o)}'
- J(e-a,) o

0.
L (12)

\

/

where the summatio/n sign is understood to mean that the quantity within
the braces is summed over the entire range of (§-8;) between .

‘Equation (12) determines 6 at any point in the flow field
(channel). For a point (CDO,W(‘)) on the chamnel walls ¥ is equal

to 0 or % and the integrands in equation (12) become

"2 log, cosh |(<I5—?i1>o)|

or
2 log, sinh |(®-0))]
so that equation (12) becomes

. . . . | |
319(@0; Wo) = . z KLZ%E_X AI) - (é_]_g_g@;l A_I) ] (13a) ‘
| (@-2)=- % . /0

where .

AL i='I(q>-<1>¢)+Aq> " Ie-e) (i3b) |

2390
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Z h
\)‘ Iﬂ = B if WO =%
N E .
g . > : (13c)
IO = o if WO = 12t-
Ip=8 if ¥, =0 )
where
(@-2) ‘ o
w= % log, cosh [(®-&,)| a(@-8,)l  (13a)
0 | _ | | o | |
| I(@-0,)) ' |
. B = & log_ sinh|(®-@)| a|(®-9)] (13e)
e [0] [o28 ‘
o

where the + signs apply for positive values of (®‘¢6) and the - signs
apply for negative values of (®- ¢b) ‘Methods of evaluating o and B
are given in appendlx D and tabulated values are glven for a wide range
of [(®-%)| in table I. Equation (13a) determines 6(®,%) at any
point on the channel wall boundaries. Thus from equations (4a) and (4b)
or (5a) and (5b) the coordinates for the channel wall shape in the
physical xy-plane can be determined.

NUMERICAL PROCEDURE

.- The numerical procedure for the channel design solution by Green's
function is the same, except for minor details, for incompressible and
linearized compressible flow. The stepwise procedure is outlined as
follows: :

(1) For incompressible flow the velocity @ and for linearized
. compressible flow the velocity g, or which is the same thing the
. velocity 'Q and the constant downstream velocity qg, are specified

as /functions of arc length along the channel walls

. | | q=q(s) . (14a)
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Al

or

q = a(s) o (14v)
where s is arbitrarily equal to O at that point along one channel
wall where the velocity first begins to vary. : .

(2) Compute V as a function of s from equations (6b) and (142)
for incompressible flow or from equations (23), (2k), (6¢c), and (14b)
for linearized compressible flow.

V= V(s) | o (15)

(3) Compute ® as a function of s from equations (3a) and (3b)
for incompressible flow or from equations (2e), (3c), (3d), and (14b) .
for linearized compressible flow. In equation (2e) pg* is obtained
from equations (2f) to (2i). For arbitrary distributions of Q or g
equation (3a) or (3c) is integrated numerically using, for example,
Simpson's one-third rule. Thus ‘

®=0(s) | o (16)

(4) From equations (15) and (16) V and @ are known functions of
s so that : ) ,

Vv o an

Thus V is a known function of o) ‘along the channei wall boundaries in
the transformed ¢V¥-plane. :

(5) If the prescribed velocity distribution along one wall is
different from that along the other, the channel will, in general, turn
the flow. This turning angle A6 1is given by equation (ES) in
appendix E.‘_If the turning angle is ‘unsatisfactory a new distribution
of velocity as a function of s (equations (1l4a) and (14b)) is pre-
scribed and steps (1) to (5) repeated until the desired value of A0 is
obtained. Equation (E5) is integrated numerically using Simpson's one-
third rule, for example, and equation (7).

(6) The channel wall bounderies are straight parailel lines of
constant ¥ equal to O and %, and extending to *® in the .

$-direction. Along these boundaries of constant ¥ a series of equally
spaced points are located at each of which the flow direction 6  and the
physical x,y-coordinates will be determined by numerical integration.

In order to use the tables of o and P presented in this report, the .
point spacing AQ must be an even multiple of ﬂ/24. Thus the smallest
point spacing /24 is equal to 1/12 of the channel width (x/2). For

N

2390
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a particular prescribed velocity distribution along the channel walls
the accuracy of the solution increases, and so does the amount of com-
puting, as the point spacing is reduced. The error for a given point
spacing depends on the prescribed velocity distribution and its order
of magnitude is given by the leading term of the error series of the
formula used for numerical integration (table VIII, reference 2, for
example). For the numerical example presented in this report the point
spacing A® was =/12. From equation (17)

A log, V. (loge V)QhAQ - (loge V)®
X 2 G | (18)

where the subscripts @ and &+Ad refer to adjacent points along the

. channel boundaries.

(7) The value of 6 at each point (8,,%) on the channel wall
A loge v ‘ .
boundaries is obtained from equation (lSa) in which A% 1s given
by equation (18) and AI is given by equations (13b), (13¢), and table I.

-~ Note that in equation (13a) the origin has been moved to ,¢6 by changing

A log, V
from ¢ to (®-&)). Thus the value of —x% — for a given value of

(¢-8,) varies with 0y

(8) The physical x,y-coordinates at each point on the channel wall
boundaries are obtained by the numerical integration of equations‘(Sa)
and (5b) for incompressible flow, or equations (4a) and (4b) for linear-
ized compressible flow where Ay* is given by equation (2e). The con-
stants of integration in equations (4) .and (5) are selected to give known
values of x and y at upstream or downstream positions where flow
conditions can be considered uniform.

NUMERICAL EXAMPLE

The channel design method of this report has been applied to the
design of an elbow for the same conditions as example IV of Part I.
The design is for an accelerating elbow with no local decelerations of
the prescribed velocities along the channel walls and with linearized.
compressible flow.

Prescribed velocity distribution. - The prescribed velocity dis-
tribution along the channel walls is given by a4 downstream of the
elbow and by Q as a function of s along the elbow walls. The down-
stream velocity qg 1is 0.80176. Along the inner wall (with smaller
radii) of the elbow the arbitrarily prescribed velocity -Q as a function
of arc length s .1s given by '
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Q=0.5 (s < 0)

2 3 o | '
Q=%+%"% (0<5'23.0) - (29)
Q=1.0 (s = 3.0)

This velocity distribution is plotted in figure 2.

From equations (1), (2Jj), (3c), and (3d)

n ~2id
dq) = —2- A\V* Qd.S

which together with equation (19) integrates to give
/ .

e |
@:12‘_2‘1(05s) (s 0). w

Akzqd ‘ 3 4 o o o
boz e (OO (230

where from equations (2h), (2i), and (2k) the constant kp is equal to
1.36332 and from equations (2e) to (2k) the constant Ay* is equal to

0.73782. From equations (1), (2J), (6c), (19), and (20) the varlatlon
in loge Vv with ¢ was obtalned and is plotted 1n figure 3. T

The distribution of veloc1ty as a function of arc length is the
séme for both channel wdlls, but, as indicated in figure 3, the dis--
tribution on the outer wall (larger radll in xy-plane) is shifted in the'

positive @-direction an amount equal o % n relative to the distri-

bution on the inner wall. Thus, a velocity dlfference'ex1sts oh the two

walls at equal values of @ in the interval 0< ® = 3.333m, as shown

in figure 3. The greater this difference in velocity or the greater the
range in ® over which velocity differences exist, the greater is the
elbow turning angle. For the prescribed veloc1ty distribution given in
flguresoz and 3 the elbow turnlng angle glven by equatlon (ES) is
-104.08

nzON .
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Results. - The elbow design resulting from the prescribed velocities
given in figures 2 and 3 is plotted in figure 4. As indicated in
table II the contour of this elbow is very néarly the same as that
obtained by relaxation methods for linearized compressible flow with the
‘same prescribed conditions (example IV, Part I).

The solution obtained by Green's function (Part II) required one
experienced computer 3 days whereas the solution by relaxation methods
(Part I) required about 10 days. The relaxation solutions provide
additional information, such as the distribution of velocity across the
channel, but for the most part this additional information is of second-
ary importance and the design of channels by Green's function is more
rapid and therefore to be preferred over the design by relaxation
methods.

SUMMARY OF RESULTS

Methods of solution by Green's function are developed for the design
of two-dimensional unbranched channels with prescribed velocities as a
function of arc length along the channel walls. The methods apply to
incompressible and linearized-compressible, nonviscous irrotational flow.
One numerical example is presented for an accelerating elbow with
linearized compressible flow. The elbow shape obtained from the solution
by Green's function is the same as that obtained from a solution by
relaxation methods for the same prescribed conditions. The time required
for the calculations was considerably less for the solutlon by Green's

functlon

‘

‘Lewis Flight Propulsion Laboratory
‘National Advisory Committee for Aeronautics .
Cleveland, Ohio, September 6, 1951 ‘ \
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APPENDIX A
SYMBOLS
The following symbols are used in this report:

Bernoulli's numbers

Bl’BS’

c constant, equation (BS)"

G ' Green's function of the second kind, equations (B2)
and (10)

I - integral (o« or B) \

kq coefficient, equation (2g)

k, coefficient, equation (2kY

A " length of closed boundary

n ‘ distance in xy-plane measured normal to direction of flow
(expressed as ratio of characteristic length equal to’
channel w1dth downstream at infinity).

Q velocity (expressed as ratio of characteristic velocity
equal to constant channel velocity downstream at
infinity) :

o] velocity (expressed as ratio of stagnation speed. of
sound)

q* , velocity used in linearized compre831ble flow and related

‘ to q by equation (29)

r distance from any point in ®¥-plane to point (@O,Wb)
at which logarithmic singularity exists '

s distance in xy-plane measured along direction of flow

' (expressed as ratio of characteristic length equal to
channel width downstream at 1nfin1ty)

v velocity parameter defined by equations (6b) and (6c) for

incompressible and linearized compre551ble flow,
respectively

2390
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W,Wl,WZ

X,y

™|

P and Cp*

Vv and y*

Ay*

17

complex functions defined by equetions (CS), (Cla), and.
(c2a), respectively : . , ,

Cartesian coordinates in physical plane (expressed as
ratios of characteristic length equal to channel width

- downstream at infinity)

complex coordinate, equation (C1b)

conjugate of =z

integral, equation (13d)

integral, equation’ (13e)

ratio of specific heats

finite increment

flow direction in physical xy-plane (measured in counter-
clockwise direction from positive x-axis)

channel turning angle, equation (E1)
density (expressed as ratio of stagnation density)

density used in linearized compressible flow and related
to p by equation (2f)

velociﬁy potential used as Cartesian coordinate in trans-
formed OV-plane and related to ® or ©* by equa-
tion (3a) or (3c),-respective;y

velocity potential for incompressible and linearized- _
compressible flow, respectively, equations (3b) and (Sd)

stream function used as Cartesian coordinate in trans-
formed @V¥-plane and related to ¥y or 'w* by equa-
tion (2a) or (2c), respectively

stream function for incompressible and linearized com-,
pressible flow, respectively, equations (2b) and (24)

boundary value of v*, for linearized compressible flow,
along left channel wall when faced in the direction of
flow, equation (2e)
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Subscriptsﬁ,

a,b

~quantities related to any twokselected values of velocity

NACA TN 2595

any harmonic function in o¥-plane ‘ . N

0623

(q and qp, respectively) for which densities given
by equations (2h) and (2i) are equal to densities given
by equations (2f) and (2g) :

conditions downstream at infinity

point in QW-plane at which 6 is determined
conditions upstream'at infinity
point at (®-&)) on either channel wall boundary

point at R@-@b) + Ada on either channel wall bolundary

boundary along which ¥ equals 0

] A

boundary along which - ¥ equals
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APPENDIX B

INTEGRAL EQUATION FOR 6(%,,¥,)

If the distribution of the angle 6(®,¥) in the transformed
®¥-plane is harmonic, that is, satisfies equation (8) within and on the

channel walls (¥ equals O and %), then from Green's theorem and
the theorem of mean value it can be shown that the value of 6 at a.
point (®,,¥,) within (or on) the channel walls is given by (refer-

ence 3, p. 204, for example)
oG 36
e - — - - — — ]
(0o5¥,) = f( G > ad ( 6 S5+ @ M> a¢| (B1)
0 T
o | 2 |

where the two integrals on the right side of equation (Bl) fepresent
the line integral around the channel walls in the counterclockwise

direction with the signs adjusted so that 5%_ represents the inner
normal to the path of integration.

' The function - G(cp,ur) in equation (Bl) is of the form (refer-
ence 3, p. 204). :

a(2,¥) = loge% + o(0,¥) o - (B2)

where r is the distance from any point (®,¥) = to the point (@o,wo)

and where o(®,¥) is an arbitrary function that is harmonic within and
on the channel walls. (Thus from equation (B2), G(®,¥) is harmonic

within and on the channel walls except at the point (@o,Wb) where a
logarithmic singularity exists.) Because the harmonic function w(@ )

is arbitrary, the function G(@ Y¥) can be selected so that along the
7ty oG

‘channel wall boundaries (¥ equals O and 5) Sv is a constant ¢

given by the following equation (obtained from notes presented by
Tamarkin and Feller in the 1941 Summer Session for Advanced Instruc-

tion and Research in Mechanics at Brown Univ.):
¢ =2 (83)

where 1 1is the length of the path along which the line integral is
taken. For the path under consideration 1 is infinite and therefore
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G(®,¥) can be selected so that g%; is zero along the channel walls.

A function with this property is called\a Green's function of the sec-
ond kind. Equation (Bl) becomes S .

o) ,

1 bo)} o6
6 = = G=—) - = ad
or, combined with equation (6a)
. ® | o
o0, =22 | | (c dlog V) SEC00] PPN
0770" T 2x ) T Y o |
e OO E
: \ - "dlog. V . | ‘ - S
Along the channel walls ——=— is known from the prescribed veloc-

0d .
ity distribution so that, after the proper Green's function G has
been determined (appendix C), equation (9) determines the value of €
at any point (&,,¥,)- The value of 6(¢,,¥,) &iven by equation (9)
can be adjusted by an arbitrary constant of integration to give a spec-
cified value of 6 at one point in the flow field.

" Oeez
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APPENDIX C

GREEN'S FUNCTION OF SECOND KIND

From appendix B Green's function of the second kind G éatisfies
the condition \

G . o
v

along the channel walls, which are straight and parallel boundaries
(¥ equals O and %) extending to £ in the ®-direction, and

satisfies the equation

dE

_____(i_
zau?

everywhere in the channel except at the point (@o,Wb) whefe G has

(.‘)

‘a logarithmic pole. >For these conditions the Green's function G can

be obtained by analogy from the velocity potential for incompressible
flow into a point sink at (@O,WO) between straight parallel bound-

aries at ¥ equal to O and g. The logarithmic pole for G at

Gbo,wo) éorresponds to the point sink and the condition §@,= 0 at.

the boundaries corresponds to zero velocity, that is, no flow normal
to the boundaries.

. The velocity potential for fluid flow with the boundary conditions
Jjust described is obtained from two infinite series of point sinks with
the sinks of each series spaced n distance apart in the V¥-direction
and the two series arranged by the method of igages in such a manner

G ‘

that no flow crosses the boundaries, that is === 0. This arrangement
. . . o oV A
of point sinks is shown in figure 5.

The complex functlon w1 for the first infinite series of point
sinks is given by (reference 4, p. 112, for example)

W

) , = -log, sinh (z-25) (cia)

where

=0+ 1V g | (c1b)
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The complex function wy for the second 1nf1n1te series of p01nt sinks
(mlrror image of the first series in order to prevent flow across the

boundaries ¥ equals O and - '2,7) is given by v 4 \

wp = -log, sinh (z-z,) (c2a)

where

z=0-1i¥ ' (c2p)

The complex function w for the comblned flow becomes from equa-
tions (Cla) to (CZb)

W= W) + W, = -log_ sinh [(@—@O) + i (W—WO)] -

loge simh [(0-9,) + 1 (¥+¥,)] (c3)

' The Green's function of the second kind G corresponds to the
velocity potentlal for the- 1ncompre531ble flow and is therefore given by
the real part of equatlon (CS)

G=-%2 J_ogre I:coshzy (@-@O) - cos® (TF-WO)]‘ [cosh2 (¢-2) - 'cbs? (TF+1FO)]

2
| (c4)
But along the chamnel walls ¥ is equal to 0 or % so that
0s? (U+¥,) = cos? (¥-1T)
and equation (C4) becomes‘ | | |
G op X = -loge I:cosh2 (®-%,) - cos? (‘lf—\lfo)]v ) (10)
2 \ , - .

Equation (10) gives the Green's function of the second kind along. the
channel walls (straight parallel lines of constant ¥ equal to O and

I and extending to £ in the ®-direction).

2

06g2
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APPENDIX D

EVALUATION OF o AND B

Several techniques, depending on the magnitude of the upper limit
|(<I>-<I>o)| , were used to evaluate the integrals o and B given by
equations (13d) and (13e). REach integral is treated separately in this
appendix and the values of (®-®,) for the upper limit l(Q—(Po), are
considered positive. For negative values of (0-8)) the mignitudes

of I (that is, of o or B) are equal for corresponding values of
[(2-8,)} but opposite in sign. As a result the values of AI have the

‘same sign,

Integral o

Small and medium values of (‘P-@o) . = For small and medium values
of the upper limit of integration (®-&;) in equation (13d), that is,
for 0 < (¢-9)) <60 n/24, the integral o is evaluated by Simpson's
one-third rule using increments of (‘D—Qo), equal to 1:/4.-8.

Large values of (®-®&)). - For large values of (- ‘150) that is
for (¢-®) > 60 /24, the integrand in equation (13d) becomes

log, cosh (2-%)) = (%-2) - 1og, 2 (p1)

so that equation (13d) becomes

60n /24
o= log, cosh (9-9,) a(%-%,) +

0

[(2-2)

[@-2) - 108, 2] a@-9)
601 /24
(28 )° | :
~ 25.809782 + | —5—— - 0.693147 (-9, - 25-.598552J

= 0.411230 - 0.693147 (- @) + = (8- )? (D2)
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Equation (D2) gives values of o for values of ($-%)) equal to or -
greater than 601/24 Values of the integral o are tabulated in table I
for a range of |(2-,)] between 0 and 100st/24 in increments of x/24.

For negative values of (@ QB) the sign of o 1is negative.

integral' B

Small values of (§-@,). - For . {#-@,) equal to zero the integrand
of equation (13é) becomes minus infinity so that Simpson's one-third
rule cannot be used to evaluate B in this region of (9-&)), as was
done for «. However, equation (13e) integrates by parts to give

(&%)
log, sinh (9-0,) a(0-9,)

= (9-®,) log, sinh (P-0,) -

©-2.) | |

'(<I>-<Po) ‘ctnh (<I>-<I>O) d(@-@o) : " (D3)
0

vhere the integrand (®-2 ) ctoh  (9-8)) on the right side of equa-

tion (DS) can be expanded in’ the follow1ng series form:

22, (0-0)2 2tB, (8-0)% 265 (0-0)°
(@-95) ctnh (®-8y) =1 + 12‘ CIA 34' o) . 56' o/

8 8 10, . 10 12 12
2%, (©-9)° 2%y ©-90) 2123, (9-0))
8T + ToT - 127

o ‘ (D4)‘

where Bj, 'Bz, and go forth, are called Bernoulli's numbers (refer-
ence 5, p. 90, for example). From equations (D3) and (D4)

oegz
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©-3,)°  (®-)° 2(2-8)7

B=(@-8) log, sinh (9-0)) - (2-%)) - s+ 3 - e+
(@-9)°  2(0-0)M 1382 (0-0)%°
12,525 ~ 1,029,105 T §,300,667,375 _ -~ (D5)
Equation (D5) was used to obtain B as a function of (<I> <I>) for
0 2 (®-2) < 8n/24.
Medium values of (®- ®)). - For medium values of the upper limit

of integration (@-@)) in equation (13e), thet is, for 8x/24< (- (D

< 601(/24 the 1ntegra1 B is evaluated by Simpson's one-third rule as
was done for a. ’ : ‘

Large values of ((I>—“<I>o) . - For large values of (CD-(DO) , that is,
for (®-3)) > 60x/24, the integrand in equation (13e) becomes

loge simh ($-8) = (0-0.) - log, 2 ~ (pe)

so that equation (13e) becomes

’ 601 /24 ,
B = . log, sinh (<I>-<I>O) d.@-@o) +

©-2) ,

[(2-8,) - logs 2] a(@-
u | 601 /24 | o
(©-0)2

~ 24.576Q82 + [————

5 - 0.693147 (®-90) - 25.398552]

- 0.822470 - 0.693147 (2-3) + > (¢ o ) ,‘ | (D7)

Equation (D7) gives values of B for values of (&- ®) equal to or

L , greater than 60:(/24: Values of the integral B are tabulated in table I
L . for a range of [(®-&,)| between O and 100x/24 in increments of n/24.

| '~ For negative values of ($-3,) the sign of B changes.
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 APPENDIX E

CHANNEL TURNING ANGLE
If the prescribed velocity distribution along one channel wall
differs from the distribution along the other wall, then in general the
channel-deflects an amount A8, which is the difference in flow direc-

tion far downstream and far upstream of the region in which the pre-
scribed velocity distribution varies. Thus, ' )

A8 =0 - 0y “ | ()

For large values of |(<I>-®O)| such as occur far upstream and far

dovnstream of the region in which the prescribed velocity varies along
the channel walls '

cosh? (§-0,) >> cosZ (¥-¥,)

so that from equation (10)

Go = G

NI

~2 [10-05)] - 1ogezj , (E2)
Far upstream & <@ so that

l@-0,)| = (0-8,)

‘and because V is harmonic

PRI/ loge V O loge V : .
"EF*£'<“5¢ % @®=0 (

-0 2

so0 that equation (E2) substituted in equation (9) gives

| 1 [Ty O loge V\ 3 loge V ) .
Oy =% % )« T3 |2 (E3)
: z |

-0

Nneco
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Likewise, far downstream ®,>® so0 that

[(e-8,)] = - (8-0,) o “

and equation (E2) substituted in equation (9) gives

ba-2| o [ ?jgg_‘ﬂ’_)ﬂ - @1%‘?;_ OJ ag (E2)
2

-0

From equations (El), (E3), and (E4)

0 log. V 01 v
_ -2 o) = O8e -
w2 o5 (Y )
- .2_
Equation (ES) determines the channel turning angle A9.
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TABLE T - TABULATED VALUES OF THE INTECRALS o AND B FOR A RANGE OF [(o-0)]

NACA TN 2595

[Computational methods given in appendix D] NACA
[(e-0,)] ot il (V) el
£ A% &P 4B
(ab=r/24)|(A0=27/24) (Ab=r/24) | (ad=2n/24)
‘ ) 0 )
1(x/24) 0000575 22081, sozg70 [ -0.396987 -0-396957 | 5. 611660
2(x/24) ~oozar0 229 611660 |—2iE128
3(x/24) o0o9az 00072 poss1 | -.756a06 a2 I paz7e1
4(n/24) ~ozssol |013%59 : T esasy | 11098045 | - _
5(x/24) ottars |-021574] osoa76 | -.onease |=t2620%5 | osso79
6(x/24) 076277 051402 -.948530 | 05204 :
7(x/24) 116097 0426201 no7ezs | _.9sa3es |-=-00%BLE | o1z00e
8(x/24) 173900 |—085012 936438 | +0L7908
o(xj28) |  .zazams | -99837%| 150903 | -.e9e54z | 2059896 .100542
10(x/24) 524812 |- 2082529 -.835696 |-08064€
11(x/24) Laz2136 —09T384] 09951 | _.755309 080497 180181
12(xt/24) 534763 | 11267 _.g55715 | 1095684
13(x/24) 663098 2955 | a7ze07 | _.sz7mse [ trooll 255075
14(x/24) .807460 | 244562 -.400640 | +156698 ;
15(n/24) 068096 2180838 =zz774y -.245901 | 224759 . 327305
16(x/24) 1.145201 | 177105 .o7zsss | 172566
17(x/24) 1.330926 222725 404188 .116897 |.-220252 398006
18(x/24) 1.549389 | +210465 Ls2e67L | 207774
19(x/28) | 1.776679 |-—Z2T8%0} 471478 .5es80p | -225221 .467817
20(x/24) 2.020867 |—224188 1 792488 | AES9S
21(n/28) | z.z82008 | 2oLl 530276 | 1.0s403 | 20910 .537106
22(x/24) 2.560145 | —27O158] 1.329504 | 277191 ‘
25(x/24) Z.855504 |__299WL| oorzas | 1.624089 | 294455 606089
24(x/24) 3.167516 | —-oXe212 : 1.935685 | 011654
25(n/28) | s.a06799 | 29283 | 7565z | 2.264536 |tomoo00 .674890
26(x/24) 5.843168 | 020569 2.610573 | 346057
27(x/28) | 4.z06635 3034851 744035 | 2.973785 | 200l 743565
28(x/24) | ‘a.587205 2329570 3.354158 [ +500875
29(x/24) 1.964885 297882 aiosse | 3.751689 1007031 .812215
30(n/28) .| 5.399685 | -AL4800 4.166373 | 414684
31(x/24) | 5.851607 2329221 agoeer | 4.5080s |—+231852 880808
s2(nj28) | 6.z8065z | 449045 5.047181 | 1548978
33(x/24) 6.746025 | 285173\ oi047s | s.513301 [ 265120 | ,9se380
34(x/24) 7.250126 | 485501 5.996561 | 285260
35(x/24) 7.730557 5994311 017093 | 6.49s961 | 500%00 | 1 017038
36(x/24) 8.248119 017562 7.014499 | +SHT5%8 |
57(n/28) | s.762813 -22%6%%h osesz1 | 7.5e0175 | 534678 | g oaeess
38(x/24) 9.334680 | 21627 8.100087 | 503812
59(n/24) 9.903600 |_558960 |1 155055 | s.e60936 | 00000 1 1155034
10(x/24) | 10.489893 | -°86093 9.256021 |-286085
4i(n/j28) | 1L.092920 | 093227 N1 sp3ses | g.eseear |-—S0%E0 | 3 epss7e
s2(n/28) | 11.713281 | 620361 10.479597 | 620556
43(xj24) | 12.350777 |-283496 ht popras  [11.117080 | 83492 1 4 202118
44(x/24) | 13.005406 024629 11.771715 |—2B54626
45(n/28) | 13.677170 —STLT841 se0ee2 | 22.445477 -671762 1.360658
16(n/28) | 14.366068 |-—+20889% 15132573 000096 :
47(x/28) | 15.02101 1980884 4p9p00 | 13.838405 |—+LO80F2 1 i3 429108
a8(x/24) | 15.795268 | —=T23167 14.561571 125166
49(n/24) | 16.585571 7203031 4o7739 | 15.301875 |—2050E | 3 497738
.757436 .757436

; ;
(l)For negative. values of ($-®o) the signs of o =nd B ‘change, but the signs

of Ax and AB remain unchanged.

-

Az

0622
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TABLE I - TABULATED VALUES OF THE INTEGRALS o AND B FOR A RANGE OF |(0-8,)| - Concluded

[Computetional methods given in eppendix D.]

‘ oI = 4o AT = 28
1
oo | oP) p(1)
Ao A0 L
(ad=r/24) (ad=2n/24) (af=nfe4) | (al=2n/24)
s0(x/24) | 17.293007 : 16.05930%
51(n/2t) | 18.067579] 2572 1 see278 | 16.833880 | 2271 | 1.566276
s52(x/24) | 18.859285 | 791706 17.625585 |2 195705
53(nf24) | 19.660125| 2298840 | ) gxsgis | 18.434426 | 89884 | 1 6a4e16
sa(x/24) | 20.494101| 2825976 19.260401 —-t825975
55(x/28) | 21..557211 | --28310 | 3 703385 | 20.108511 |30 | 1703354
s56(n/24) | 22.197456| 560245 20.963755 | 860244
57(n/24) | 25.072835 877572 1 1 791095 | 21.ea1135 | <877%80 | 1 771804
58(n/24) | 25.969349 | 594514 22,735649 | +094514
59(n/24) | 24.880008} 1849 | 1 640433 | 23.647208 | 911649 | ) gsous3
co(x/24) | 25.809782| 328784 24.57608z | 20784
'
61(n/24) | 26.756694| 345912 | 1 gososs | 25.521094 | —+245912 | 3 gpe9e8
62(x/24) | 27.718750 | 363056 26.485050 | 253056
63(x/24) | 28.698940 |—28290 4 1 g79507 | 27.465240 [—x980290 | 3 977507
64(x/24) | 29.696257 [—=2915L7 28.462557 [——2oloL]
65(n/24) | 30.710717 |- 2:01%580 | 5 oag0as [ 29.477017 | 1014460 | 5 04604e
66(n/24) | 31.742311 | 22031594 30508611 | +r051594
67(xn/24) | 32.791033| 128722 | 5 114585 | 31.557333 | 1048722 | 3 134585
68(x/24) | 33.856896 | 12085663 : 32.623196 | 12065863
69(x/24) | 34.930805 12082990 | » 1ampn | 33706105 | 2:082999 | 5 1g3123
70(x/24) | 36.040029 |+2100154 54,806529 | L:10015%
71(x/28) | 37.157289 2227360 1o o51665 | 35.923589 | L7260 L 5 as1g63
72(n/24) | 38.291692 | L-154403 37,057992 | L:154405
75(x/24) | 39.443230 22253538 | 5 sa0p01 | 38.209530 |~191958 | 5 sp0e01
' 74(x/24) | 40.611893 |+ 268665 39378193 |—-: 168663
75(x/24) | 41.797701 | 2285808 |5 38740 | 40.564001 | 2185898 | 2 zge7a0
76(x/24) | 43.000643 | -£=202942 41.766943 |-1:202942
77(nf2a) | 44.220720 | 22220087 |5 457279 | 42.987010 | 1:P2O0087 | 2 457279
78(x/24) | 45.457022 | 1:257212 44224222 | Lr257212
79(x/et) | 46.712269 2234 | 5 spsp18 | 45.478569 2229447 | 5 sasels
80(n/24) | 47.983750 | LBTH48L 46.750050 1'2;;48:
286606 1.28860
81(x/22) | 49.272356 =22 2.504357 | 48.038656 = 2.594357
82(x/e8) | 50.578107 1'325;51 49.344407 i‘sozazl
83(n/24) 51900992 222885 | 5 ee2a95 | 50.667202 -322885 2.662895
84(n/24) | 53.241002 | £:340010 52007302 | 1520010
. ; 1.357156
85(n/24) | 54.598158 i 5:1;2: 2.751435 | 53.360458 | 2751455
86(n/24) 55.972447 -5 54,738747 .
87(x/24) | 57.563861 =241 |5 709074 [G6.130161 | :39M41E | 2799973
88(x/24) | 58.772421 i‘zgzzgi _ 57.538720 1‘:::§g:
89(x/24) 60.198115 1.442818 2.868512 | 58.964415 1.442818 2.668513
90(n/24) 61.640933 1.459954 60.407233 1'459964
91(x/24) 63.100897 1:477098 2.937052 | 61.867197 1'477098 2.937052 .
92(n/24) 64.577995 1'494233 63.344295 1'494253
93(x/24) 66.072228 1' T 3.005590 | 64.838528 1'511557 3.005590
94(x/24) 67.585585 =2 66349885 .
95(n/28) | 69.112088 2228503 |5 074130 [e7.878388 1'5285°j 3.074130
96(x/24) 70657725 |-m2A2657 69424025 |-O%583
97(xjz8) | 72.220886 | 562761 | 5 142668 | 70.986788 | 1-5276L | 3142668
98(n/24) | 75.800593 1'5;390; 72.566695 1‘253222
1.59704 .
99(n/24) | 75.397435 3.211206 | 74.163735 3.211206
: ol 1.614164 1.614164
100(x/24)2) | 77. 011509 75.771899

1
. ( )For negative values of (0-@0)
of An and AP rémain unchanged.

(2)

for B.

the signe of o and B change, but the signs

For values of |(@-0°)| >100(n/24) use equation (D2), for o and equation (D7)

’
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TABLE IT - COMPARISON OF ELBOW DESIGNS OBTAINED FROM SOLUTIONS BY RELAXATION METEODS AND BY GREEN'S FUNCTION :
[Linearized compressible flow; prescribed velocity distribution given in figs. 2 and 33 .
\ .
: ¥ =0 ¥ = x/2
(Inner wall) (Outer wall) !
Solution by Solution by Solution by Solution by
" relaxation methods Green's function relaxation methods Green's function
(Part I). (Part II) (Part I) (Part II}
Q q T . 0 - v Py Q q X . i) - Y )
R (deg) (aeg) | - : (deg) (deg)
-22(n/24)| 0.5000 | 0.4009 | -2.466 | -0.769 0 -2.466 | ~0.769 1} 0.5000 | 0.4009 | -2.466{ .770| © -2.466 .770 0
-20(x/24)| .5000| .4009| -2.241| -.769 W0l -2.241| -.769 .0l | .5000 | .4009 |-2.241 L770 -.0L | -2.241 770 -.01
-18(n/24){ .5000{ .4009| -2.016| -.769 .01 -2.016 | -.769 .01 | .5000 { .4009 |-2.016 .770 -.01 .770 -.01
-16(x/24)] .s000| .4009{ -1.791| -.769 .02 {-1.791 | -.769 .02 | L5000 | .4009 |-1.791 .770 ~.02 .770 -.02°
-14(n/24)} .5000| .4009| -1.566| -.768 ..03 | -1.566 | -.768 .03 | .5000 | .4009 |-1.566 .770 -.03 L770 -.03 -
-12(x/24)| .5000| .4009| -1.341| -.768 .05 | -1.341 | -.768 .05 | .5000 [ .4009 |-1.341 769 -.05 .770 -.05 :
-10(n/24)| .5000| .4009[ -1.116] -.768 .08 | -1.116 | -.768 .08 | .5000 | .4009 |-1.116 .769 -.08 .769 -.08
-8(=/24)| .5000] .4009| -.891] -.768 W14 -,891 | -.768 .14 | .5000 | .4008 | -.891 .769 -.13| -.891 .769 -.13
-6(n/24)| .5000| .4009| -.666| -.767 24| -.666 | -.767 .24 | .5000 | .4009 | -.668 .768 -.21| -.666 .768 -.22
-4(n/24)| .5000| .4009| -.441| -.766 40 | -.441 | -.766 .41 | .5000 | .4009 | -.441 L7687 ~.35] =.441 .767 -.36 3
-2(n/24)! .5000| .4009| -.216] -.763 .70 | -.216 | -.763 .74 | .5000 | .4009 | -.216 . 765 -.56 | -.2316 .765 -.59
o .5000] .4009 .008| -.760 1.31 .010 | -.759 1.52 | .5000 | -4008 .009 .763 -.92 .009 .762 -.94
2(x/24)| .5079| .4072 .233| - -.752 2.82 .233 | -.751 2.76 | .5000 | .4009 234 758 ~1.45 .234 .758 -1.48 )
4(xnf24)] .5293| .4243 .450 | -.739 3.88 .449 | -.738 3.76 | .S000 | .4009 .459 .751 -2.22 .459 .750 -2.24 ~
6(x/24)] .5599| .4489 856 | -.724 4.00 .656 | -.724 3.89 | .5000 | .4009 .684 .740 -3.28 .684 .740 -3.29
8(x/24)| .5962| .4780 851 -.712 3.17 .850 | -.713 13.07 | .5000 | .4009 .908 .725 ~4.65 -908 .724 -4,68
10(r/24)| .6354| .5094 | 1.033| -.704 l.44 | 1.033 | -.705 1.38 | .5000 | .4009 | 1.132 .703 -6.41| 1.132 .702 -6.43
12(x/24)| .6754| .5415| 1.205| -.703 -.98 | 1.205 | -.704 -1.04 | .5000 | .4009 | 1.355 674 -8.52 | 1.355 673 -8.56
14(x/24)| .7148] .5732| 1.366| -.710 -4.00 | 1.367 [ ~.711 -4.04 | .5000 | .4009 | 1.577 .636 | -11.04 | 1.577 .635 | -11.06 “
16(n/24)| .7531| .6038] 1.519} -.725 -7.48 | 1.519 [ -.727 -7.51 | .5000 | .4009 | 1.797 .587 | -13.91 | 1.797 .586 | -13.94

18(x/24) .7894| .6329| 1.663°7 -.749 | -11.35 | 1.663 | -.750 | -11.37 | .5000 | .400% | 2.013 .527 | -17.13 | 2.013 .526 | -17.16
20(:(/24) .8235 .6602 1.798 -.781 -15.52 .| 1.799 -.783 -15.54 .5000 .4009 2.226 .455 -20.67 2.226 ~453 -20.69
22(1(/24) .8550 | .6855 | 1.926| -.822 | -19.96 | 1.926 | -.823 | -19.98 .5000 | .4009 | 2.434 .368 | -24.49 | 2.434 .367 | -24.52
24(1(/24) .8838 L7086 | 2.046 | -.871 | -24.62 | 2.046 | -.871 | -24.63 .5000 | .4009 | 2.635 .268 | -28.58 | 2.835 .266 | -28.59 N

26(x/24) .9097 L7293 | 2,157 | ~-.928 | -29.46 | 2.158 | -.929 | -29.47 | .5000 | .4009 | 2.829 .153 | -32.89 | 2.828 L152 | -32.90
28(x/24) L9326 | .7477| 2.261| -.993 | -34.45 | 2.261 | -.994 | -34.46 | .5000 | .4009 | 3.013 .024 | -37.40 | 3.012 .022 | -37.41
30(n/24) .9524 § .7636 | 2.356 | -1.064 | -39.56 | 2.356 [-1.066 | -39.57 .5000 | .4009 | 3.186| -.120 | -42.08 | 3.185| -.122 | -42.09
32(n/24) 29690 | L7769 | 2.443 | -1.143 | -44.76 | 2.443 |-1.144 | -44.77 | .5000 | .4009 | 3.346| -.278 | -46.93 ] 3.346| -.272 { -46.94
34(x/24) .9822 .7875 | 2.521| -1.228 | ~50.02 | 2.521 |-1.229 | -50.01 | .5000 | .4009 | 3.492 | -.449 | -51.93 | 3.492 | -.450 | -51.94

36(1(/24) .9919 .7953 | 2.590 | -1.318 | -55.27 | 2.590 |-1.320 | -55.27 .5000 | .4009 | 3.623 | -.632 | -57.08 | 3.623] -.633% ! -57.10
38(x/24) L9979 .8001| .2.650 | -1.414 | -60.49 | 2.650 [-1.415 -60.47 L5000 | .4009 | 3.736| -.826 | -62.44 | 3.736] -.828 | -62.49
40(n/24) | 1.0000 | .8018 | 2,701 |-1.514 | -65.55 | 2.70L |-1.516 | -65.51 | .5000 .4009 | 3.830| -1.030 | -68.16 | 3.829| -1.034 | -68.37
42(x/24) | 1.0000 | .8018 | 2.743 | -1.619 | -70.32 | 2.744 [-1.620 | -70.29 .5079 .4072 | 3.901 | -1.242 -74.80 | 3.901| -1.244 | -74.75 J
44(1(/24) 1.0000 | .8018| 2.777 } -1.726 | -74.81 | 2.777 |-1.727 | -74.78 | .5293 24243 | 5.947 -81.03 | 3.945] -1.456 | -80.91
46(n/24) [ 1.0000 .8018 | 2.803 | -1.836 | -78.97 | 2.803 {-1.837 { -78.96 .5599 .4489 | 3.969 -86.33 | 3.969| -1.662 | -86.23
48(1(/24) 1.0000 ( .8018 | 2.820 | -1.947 | -82.82 | 2.821 |-1.948 | -82.80 | .5962 4780 | 3.974 -90.69 | 3.975[ -1.856 | -90.59 . ,
50(x/24) | 1.0000 | .8018 | 2.831 | -2.059 | -86.28 | 2.831 [-2.059 -86.26 .6354 | .5094 | 3.966 -94.16 | 3.967| -2.040 | -94.09 ¢
52(x/24) | 1.0000 ) .8018 | 2.835|-2.171 | -89.37 | 2.836 |-2.172 | -89.34 | .6754 5415 | 3.950 -96.93 | 3.951| -2.210 | -96.88
54(x/24) | 1.0000 | .8018 | 2.834 | -2.283 | -92.07 | 2.834 {-2.285 | -92.04 | .7149 .5732 | 3.927| -2.369 | -99.11 | 3.928] -2.371 | -99.07
56(n/24) | 1.0000 | .8018| 2.827 | -2.396 | -94.40 2.828 |-2.397 | -94.37 L7531 | .6038 | 3.900 | -2.520 | -100.83 | 3.901| -2.522 |-100.80
58(x/24){ 1.0000 | " .8018 | 2.817 | -2.508 | -96.39 | 2,817 [-2.509 | -96.36 | .7894 .6329 | 3.871| -2.663 [ -102.17 | 3.872| -2.665 |-102.14

60(x/24) | 1.0000 | .B8018 | 2.803 | -2.618 | -98.05 | 2.803 {-2.620 | -98.03 | .8235 .6602 | 3.841| -2.799 | -103.19 | 3.842 | -2.801 |-103.17 i
62(1(/24) 1.0000 | .8018 ) 2.786 | -2.731 | -99.44 | 2,786 |-2.732 | -99.42 -8580 .6855 | 3.809} -2.929 |-103.95 | 3.810) -2.931 (-103.94
64(n/24) 1.0000 ] .8018| 2.766 | ~-2.841 [-100.56 | 2.767 |-2.842 [-100.55 .8838 | .7086 | 3.777| -3.055 | -104.49 | 3.778| -3.056 |-104.48
66(1!/24) 1.0000 | .8018 | 2.744 | -2,952 |-101.47 | 2.745 |-2.953 |-101.45 .9097 L7293 | 3.746 | -3.176 | -104.84 | 3.746| -3.178 |-104.83
68(7(/24) 1.0000 | .8018| 2.721 | -3.062 |-102.18 | 2.722 |-3.063 {-102.17 .9328 L7477 | 3.714| -3.294 [ -105.03 [ 3.715| -3.296 [-105.03 i
- 70(:(/24) 1.0000 | .8018 (| 2.697 | -3.172 [-102.73 | 2.698 |-3.173 [-102.72 .9524 | .7636 | 3.683 ] -3.409 | -105.10 | 3.684 | -3.411 |-105.09
72(n/24) | 1.0000 | .8018| 2.672 | -3.281 [-103.14 | 2.672 [-3.283 |-103.14 | .96%0 .7769 | 3.653| -3.522 | -105.05 | 3.654; -3.524 |-105.04
74(n/24) | 1.0000 -8018 | 2.646 | ~3.391 |-103.45 | 2.647 |-3.392 |-103.44 | .9822 .7875 | 3.623 | -3.633 [-104.91 | 3.624 | -3.635 |-104.9]
76(1(/24) 1.0000 | .8018| 2.620 | -3.500 |-103.66 | 2.620 |-3.501 |-103.66 <9919 27953 | 3.594( -3.744 | -104.71 | 3.595| -3.746 [-104.72
78(1(/24) 1.0000 | .8018 2.593 | -3.609 [-103.81 | 2.594 [-3.611 [-103.79 .9979 .800L | 3.565 ~3.853 {-104.49 { 3.566| -3.855 [-104.49
50(1\:/24) 1.0000 | .8018 ) 2.566 |-3.719 [~103.90 | 2.567 -3.720 |-103.90 [1.0000 | .8018 | 3,537 | -3.962 |-104.28 | 3.538| -3.964 |-104.30
82(1(/24) 1.0000 | .8018 | 2.539 |-3.828 |-103.97 | 2.540 |-3.829 |-103.97 |1.0000 | .8018 | 3.510] -4.071 | -104.18 | 3.510 -4.073 | -104.19
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Figure 1, - Magnitude and direction of velocity

in xy-plane.

at point
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Figure 4, - Elbow deslgn for prescribed velocity along channel walls given in figures 2 and 3,
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